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Evolution of Dark Spatial Soliton in Quasi-phase-matched Quadratic Media∗
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Abstract We theoretically investigate the evolvement of dark spatial soliton with cascading quadratic nonlinearity
in quasi-phase-matched second harmonic generation. It is shown that the dark solitary wave can propagate stably
when background intensity is large enough, in which diffraction of beam can be balanced by the cascading quadratic
nonlinearity. We also analyze the influence of phase-mismatch on the stability of dark soliton propagation.
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The concept of optical solitons, which occur when dis-
persion (or diffraction) is balanced by nonlinearity, has
now become ubiquitous in modern sciences. In nonlin-
ear optics, the evolution of solitary waves with χ(3) non-
linearity is described by nonlinear Schrödinger equation
(NLSE). However, as has been already established, bright
solitary waves can also exist with the cascaded second-
order nonlinearities (χ(2) : χ(2)) in quadratic media. Some
experimental and theoretical works have been done to
demonstrate the existence of bright spatial soliton.[1−4]

The soliton of this type has attracted growing atten-
tion owing to the possibility to generate large, intensity-
dependent phase shifts, which lead to large effective χ(3)

nonlinearity. The experiments have proved that optical
soliton due to cascading χ(2) nonlinearity can obviously
reduce the intensity threshold than soliton with χ(3) non-
linearity.

In this paper, we first, to the best of our knowledge,
prove that the dark spatial soliton exists when second-
order nonlinearity with negative phase-mismatch is intro-
duced.

In quadratic media, cascaded quadratic nonlinear pro-
cess in second harmonic generation can be described as
(ω−ω → 0, ω+0 → ω or ω+ω → 2ω, 2ω−ω → ω). In this
process, additive phase can be created, ∆φNL = (Γ2/∆k)z
(Γ is the initial optical intensity of fundamental wave,
∆k = 2k1 − k2, z is the propagation distance), just as
that in third-order nonlinear process. So we can obtain
the effective nonlinear index of refraction

n2 eff =
4πd2

eff

cε0λn2ωn2
ω∆k

,

which is 1 ∼ 2 order lager than nonlinear index of refrac-
tion in third-order nonlinear process. Therefore we can
see that when ∆k > 0, if a bright beam is launched into

the media, the additive phase change resembles the in-
tensity profile of the beam, forming an optical lens that
increases the phase in the beam’s center while leaving it
unchanged in the beam’s tails. This induced lens focuses
the beam, so, a phenomenon like self-focus can exist and a
bright spatial soliton may be achieved. Until now, most of
research groups have focused on the study of bright spa-
tial soliton. However, if phase-mismatch ∆k < 0, because
intensity of the edge of the beam is larger than that of
the center, the phase change in the center is still larger
than that in the edge. So, the spatial dark soliton can be
predicted.

Under the condition of slowly varying envelope approx-
imation, we get the wave coupling equations of spatial
soliton in a quasi-phase-matched (QPM) quadratic non-
linearity media. They used to be reduced in a normalized
form,[5,6]

i
∂a1

∂ξ
+

1
2
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⊥a1 + d(ξ)a∗1a2 exp(−iβξ) = 0 ,

i
∂a2

∂ξ
+

α

2
∇2
⊥a2 − δΛδ · ∇2

⊥a2 + d(ξ)a2
1 exp(βξ) = 0 , (1)

where a1, a2 are the normalized amplitudes of the funda-
mental and harmonic waves respectively, α = k1/k2, k1, k2

are the wave numbers at the two frequencies. The parame-
ter β (β = k1η

2∆k) is proportional to the phase mismatch
∆k (∆k = 2k1−k2+2π/Λ, Λ is the one-order quasi-phase-
matched grating period) and η is the characteristic beam
transverse width. ξ is the propagation distance in the unit
of k1η

2. δ accounts for the Poynting vector walk-off when
propagation is not along the crystal optical axes. We can
set δ = 0 because Poynting vector walk-off is absent in
typical QPM geometries. The function d(ξ) stands for
the effective nonlinear coefficients involved in QPM. ∇⊥
represents ∂/∂s in the situation of one dimension, here s

∗The project supported by the Key Program of the Fund of Technology Development of Shanghai, China under Grant No. 04DZ14001

and National Natural Science Foundation of China under Grant No. 60477016
†Correspondence author, E-mail: xfchen@sjtu.edu.cn



No. 4 Evolution of Dark Spatial Soliton in Quasi-phase-matched Quadratic Media 733

is the normalized transverse coordinate in the unit of η.
In our simulation, in order to investigate the evolution

of dark soliton wave in QPM media, the input function of
original fundamental wave is chosen as

f(r) =



e−(r+200)2 , −300 < r < −200 ,

1 , −200 < r < −2π ,

1
2

(
− cos

(r

2

)
+ 1

)
, −2π < r < 2π ,

1 , 2π < r < 200 ,

e−(r−200)2 , 200 < r < 300a .

(2)

The input beam is shown in Fig. 1. The width of back-
ground is much wider than that of dark hollow, which is
accord with the ideal situation of dark soliton. In the edge
of input wave, we introduce a Gauss function in order to
weaken the possible reflection in simulation. We intro-
duce a π phase difference between two sides of the hollow,
otherwise the hollow at the center will split into two ones
during the evolvement.[7] In Fig. 1, the width of the hol-
low is about 8η. To investigate the beam evolvement, we
integrate Eq. (1) numerically using a split-step approach.
The linear part (∇2

⊥) is integrated in the Fourier space
and the nonlinear part is integrated by a fourth Runge–
Kutta algorithm. We divide the propagation process into
many steps. In every step, the diffraction effect is first
considered exclusively, and then only nonlinear process is
considered.

In our numerical simulation, we investigate the evolve-
ment of spatial dark soliton with cascading χ2 nonlinear-

ity. We first investigate the evolvement of spatial dark
soliton when the input intensity of original fundamental
wave is relatively small. We set β = −15, while a1 = 1,
and for clear observation, we let the input beam propagate
10 diffraction lengths. The result of numerical simulation
can be seen in Fig. 2(a). The input beam is expanded
intensely and diffraction can be seen clearly. The result
shows that when the intensity of the background is weak
enough, the diffraction dominates and cannot be balanced
by the cascading quadratic nonlinearity.

Fig. 1 The input intensity of the spatial dark soliton in
the numerical simulation and there is a π phase difference
between two sides of the hollow.

Fig. 2 (a) The evolvement of input pulse for 10 diffraction lengths. a1 = 1 and we only draw the central part of the
beam; (b) The evolvement of input pulse for 5 diffraction lengths. a1 = 5 and we only draw the central part of the beam
too.

When the intensity of fundamental beam increases,
it becomes self-trapped owing to the increasing focusing
effect by cascading quadratic nonlinearity. Figure 2(b)
shows the evolvement of input beam in 5 diffraction
lengths when normalized amplitude a1 = 5 is adopted.

It is clearly shown that in the propagation process the in-
put pulse does not diffract and its original shape is main-
tained. In this case, the diffraction of the dark beam
is almost balanced by cascading quadratic nonlinearity
in QPM SHG. As we can see, the existing stable state



734 WANG Fei-Yu, CHEN Xian-Feng, CHEN Yu-Ping, YANG Yi, and XIA Yu-Xing Vol. 43

in cascading quadratic nonlinearity is analogous to that
of solitons (bright and dark) with χ(3) nonlinearity and
quadratic spatial bright solitons.[8−10] Furthermore, when
we continue to increase the intensity of input beams, the
evolvement becomes unstable and the beam splits into sev-
eral parts. Detailed study of unstable self-trapped of dark
beams in cascading quadratic nonlinearity is in process.

Fig. 3 The FWHM of fundamental wave at output sec-
tion with different wave vector mismatch β. a1 = 5 and
the evolvement distance is 5 diffraction lengths.

Lastly, we analyze the influence of ∆k (∆k = 2k1 −
k2 + 2π/Λ) for spatial dark soliton propagation. Here we
do not analyze ∆k directly, instead we use β (β = k1η

2∆k)
and set η = 0.02 mm. In the theory of dark soliton with

cascaded χ(2) nonlinearity, wave vector match should be
avoided. Here we set a1 = 5 and let the pulse propagate 5
diffraction lengths. We only alter wave vector mismatch
between fundamental wave and harmonic wave. We alter
β from −30 to 0 and investigate the FWHM of output
pulse. The result can be seen in Fig. 3. When ∆k is
small, namely β is small, as we can see, output pulse is
very unstable and unregulated. In fact, in this situation
dark soliton does not exist. And we can also see that when
|β| is larger than 15, the output pulse becomes stable and
soliton is formed. The numerical simulation result is in
accord with the theoretical predication.

In our numerical simulation, we design the model on
the basis of periodically poled lithium niobate (PPLN).
For example, the normalized intensity of fundamental
wave corresponds to the magnitude of GW/cm2, which
is available by using pulsed solid lasers. For 5 diffraction
lengths, the actual length is about 25 mm, which is the
usual length for PPLN.

In summary, in our numerical simulation, we have in-
vestigated the evolvement of spatial dark soliton by cas-
caded second-order nonlinearity with negative wave vector
mismatch. When the input intensity of fundamental wave
is large enough, spatial dark solitons can propagate stably
and do not diffract. On the contrary, spatial dark beams
will diffract clearly. We also studied the influence of ∆k

for spatial dark solitons evolvement and concluded that a
quantity of wave vector mismatch is needed to achieve a
stable dark soliton.
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